Классы вычислительных машин.

30.08.2020 15:20

    Электронная вычислительная машина (ЭВМ), компьютер — комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач. 

    ЭВМ можно классифицировать по ряду признаков, в частности: 

• физическому представлению обрабатываемой информации; 

• поколениям (этапам создания и элементной базе). 

• сферам применения и методам использования (а также размерам и вычислительной мощности). 

 

Физическое представление обрабатываемой информации.

    Здесь выделяют аналоговые (непрерывного действия); цифровые (дискретного действия); гибридные (на отдельных этапах обработки используются различные способы физического представления данных). АВМ — аналоговые вычислительные машины, или вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т. е. в виде непрерывного ряда значений какой-либо физической величины (чаше всего электрического напряжения): ЦВМ — цифровые вычислительные машины, или вычислительные машины дискретного действия, работают с информацией, представленной в дискретной, а точнее, цифровой форме В силу универсальности цифровой формы представления информации ЭВМ является более универсальным средством обработки данных. ГВМ — гибридные вычислительные машины, или вычисли- тельные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме. Они совмещают в себе достоинства АВМ и ЦВМ. ГВМ целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами. 

 

Поколения ЭВМ.

    Идея делить машины на поколения вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения ее структуры, появления новых возможностей, расширения областей применения и характера использования (табл. 1). 

 

Таблица 1. Этапы развития компьютерных информационных технологий

 

    К первому поколению обычно относят машины, созданные на рубеже 50-х гг. и базирующиеся на электронных лампах Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести только крупные корпорации и правительства. Лампы потребляли значительное количество электроэнергии и выделяли много тепла. Набор команд был ограничен, схемы арифметико-логического устройства и устройства управления достаточно просты, программное обеспечение практически отсутствовало Показатели объема оперативной памяти и быстродействия были низкими. Для ввода-вывода использовались перфоленты, перфокарты, магнитные ленты и печатающие устройства Быстродействие порядка 10—20 тыс. операций в секунду Программы для этих машин писались на языке конкретной машины. Математик, составивший программу, садился за пульт управления машины, вводил и отлаживал программы и производил по ним счет. Процесс отладки был весьма длительным по времени. Несмотря на ограниченность возможностей эти машины позволили выполнить сложнейшие расчеты, необходимые для прогнозирования погоды, решения задач атомной энергетики и др. Опыт использования машин первого поколения показал, что существует огромный разрыв между временем, затрачиваемым на разработку программ, и временем счета. Эти проблемы начали преодолевать путем интенсивной разработки средств автоматизации программирования, создания систем обслуживающих программ, упрощающих работу на машине и увеличивающих эффективность ее использования. Это, в свою очередь, потребовало значительных изменений в структуре компьютеров, направленных на то, чтобы приблизить ее к требованиям, возникшим из опыта эксплуатации компьютеров. Отечественные машины первого поколения: МЭСМ (малая электронная счетная машина), БЭСМ, Стрела, Урал, М-20.

    Второе поколение компьютерной техники — машины, сконструированные в 1955—65 гг. Характеризуются использованием в них как электронных ламп, так и дискретных транзисторных логических элементов. Их оперативная память была построена на магнитных сердечниках. В это время стал расширяться диапазон применяемого оборудования ввода-вывода, появились высокопроизводительные устройства для работы с магнитными лентами (НМЛ), магнитные барабаны (НМБ) и первые магнитные диски. Эти машины характеризуются быстродействием до сотен тысяч операций в секунду, емкостью памяти — до нескольких десятков тысяч слов. Появляются языки высокого уровня, средства которых допускают описание всей необходимой последовательности вычислительных действий в наглядном, легко воспринимаемом виде Программа, написанная на алгоритмическом языке, непонятна компьютеру, воспринимающему только язык своих собственных команд. Поэтому специальные программы, которые называются трансляторами, переводят программу с языка высокого уровня на машинный язык. Появился широкий набор библиотечных программ для решения разнообразных задач, а также мониторные системы, управляющие режимом трансляции и исполнения программ, из которых в дальнейшем выросли современные операционные системы Операционная система — важнейшая часть программного обеспечения компьютера, предназначенная для автоматизации планирования и организации процесса обработки программ, ввода-вывода и управления данными, распределения ресурсов, подготовки и отладки программ, других вспомогательных операций обслуживания. Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х гг наметился переход к созданию компьютеров, программно совместимых и построенных на микроэлектронной технологической базе.

    Машины третьего поколения — это семейства машин с единой архитектурой, т е программно совместимых. В качестве элемент ной базы в них используются интегральные схемы, которые также называются микросхемами. Машины третьего поколения появились в 60-е гг. Поскольку процесс создания компьютерной техники шел непрерывно, и в нем участвовало множество людей из разных стран, имеющих дело с решением различных проблем, трудно и бесполезно пытаться установить, когда «поколение» начиналось и заканчивалось. Возможно, наиболее важным критерием различия машин второго и третьего поколений является критерий, основанный на понятии архитектуры. Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т. е параллельного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина. Примеры машин третьего поколения — семейства IBM-360, IBM-370, PDP-11, VAX, EC ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др. Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Емкость оперативной памяти достигает нескольких сотен тысяч слов.

    Четвертое поколение — это основной контингент компьютерной техники, разработанной после 70-80х гг. Наиболее важный в концептуальном отношении критерий, по которому эти компьютеры можно отделить от машин третьего поколения, состоит в том, что машины четвертого поколения проектировались в расчете на эффективное использование современных высокоуровневых языков и упрощение процесса программирования для конечного пользователя. В аппаратурном отношении для них характерно широкое использование интегральных схем в качестве элементной базы, а так же наличие быстродействующих запоминающих устройств с произвольной выборкой емкостью в десятки мегабайт. С точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, использующие общую память и общее поле внешних устройств. Быстродействие составляет до нескольких десятков миллионов операций в секунду, емкость оперативной памяти порядка 1—2048 Мбайт.

Для них характерны:

• применение персональных компьютеров (ПК);

• телекоммуникационная обработка данных;

• компьютерные сети;

• широкое применение систем управления базами данных;

• элементы интеллектуального поведения систем обработки данных и устройств.

    В компьютерах пятого поколения предположительно должен произойти качественный переход от обработки данных к обработке знаний. Архитектура компьютеров будущего поколения будет содержать два основных блока. Один из них — это традиционный компьютер, однако лишенный связи с пользователем. Эту связь осуществляет интеллектуальный интерфейс. Будет также решаться проблема децентрализации вычислений с помощью компьютерных сетей (распределенные, "облачные" вычисления). Одновременно считалось, что пятое поколение станет базой для создания устройств, способных к имитации мышления (искуственный интеллект).

 

Классификация ЭВМ.

    Одна из общепринятых классификаций ЭВМ приведена Б.С. Богумирским. Нам она представляется приемлемой и на сегодняшний день.

  1. Большие ЭВМ (mainframe) IBM 360/370, ЕС ЭВМ, ES/9000, IBM S/390.

  2. Супер-ЭВМ (Cray J90, Convex C38XX, IBM SP2, SGI POWER CHALLENGE, системы MPP, Электроника СС-100, Эльбрус-3).

  3. Мини-ЭВМ (PDP-11, VAX, СМ ЭВМ).

  4. Микро-ЭВМ:

  5. АРМ;

  6. встроенные;

  7. ПЭВМ.

    С точки зрения взаимодействия команд и данных, интересна классификация ЭВМ по Флинну:

  1. ОКОД (SISD) - "одиночный поток команд, одиночный поток данных". Традиционная архитектура фон Неймана + КЭШ + память + конвейеризация.

  2. ОКМД (SIMD) - "одиночный поток команд, множественный поток данных".

  3. МКМД (MIMD) - "множественный поток команд, множественный поток данных", мультипроцессорные системы (несколько устройств управления и АЛУ).

 

Основные модели ПЭВМ.

    Основные модели ПЭВМ, представленные на рынке:

  1. ЭВМ фирмы IBM и их аналоги. Характерен принцип открытости архитектуры.

  2. ЭВМ фирмы Apple собираются на базе микропроцессоров фирмы Motorola, представлены двумя семействами: Apple и Macintosh. Основное отличие от ЭВМ фирмы Intel -замкнутость архитектуры.

  3. ЭВМ независимых фирм производителей.