Логические и запоминающие устройства. Физические основы ЭВМ.

14.11.2013 18:27

    Общие сведения.

    Логические элементы — устройства, предназначенные для обработки информации в цифровой форме (последовательности сигналов высокого — «1» и низкого — «0» уровней в двоичной логике, последовательность "0", "1" и "2" в троичной логике, последовательности "0", "1", "2", "3", "4", "5", "6", "7", "8"и "9" в десятичной логике). Физически логические элементы могут быть выполнены механическими, электромеханическими (на электромагнитных реле), электронными (на диодах и транзисторах), пневматическими, гидравлическими, оптическими и др.

    С развитием электротехники от механических логических элементов перешли к электромеханическим логическим элементам (на электромагнитных реле), а затем к электронным логическим элементам на электронных лампах, позже - на транзисторах. После доказательства в 1946 г. теоремы Джона фон Неймана о экономичности показательных позиционных систем счисления стало известно о преимуществах двоичной и троичной систем счисления по сравнению с десятичной системой счисления. От десятичных логических элементов перешли к двоичным логическим элементам. Двоичность и троичность позволяет значительно сократить количество операций и элементов, выполняющих эту обработку, по сравнению с десятичными логическими элементами.

    Исследования показали, что в человеческой речи чаще всего встречаются повествовательные предложения, излагающие что-нибудь или описывающие какие-нибудь события. Эти предложения являются высказываниями. В Булевой алгебре высказывания рассматриваются не по содержанию и не по смыслу, а только в отношении того истинно оно или ложно. Принято обозначать: истинно — 1, а ложно — 0. Приведем примеры логических высказываний: «снег холодный». Данное предложение является высказыванием и при том истинным. «Снег теплый» — высказывание, но ложно. «Речка движется и не движется» не является высказыванием, так как из этого предложения нельзя понять истинно оно или ложно. «Который час?» — это не высказывание, а вопросительная фраза. Буль показал, что простейшее высказывание, связанное между собой союзами: «И», «ИЛИ», «НЕ» — составляют составное высказывание, истинность или ложность, которого можно вычислить.

    Логические элементы выполняют логическую функцию (операцию) с входными сигналами (операндами, данными).

Рис. 1

    На рисунке 1 показана реализация элементов булевой алгебры на базе транзисторов. Промышленность выпускает сотни типов электронно-логических элементов. В интегральном исполнении представляющих собой сочетание элементов «И», « ИЛИ», «НЕ».

    Логические элементы подразделяются и по типу использованных в них электронных элементов. Наибольшее применение в настоящее время находят следующие логические элементы:

- РТЛ (резисторно-транзисторная логика)
- ДТЛ (диодно-транзисторная логика)
- ТТЛ (транзисторно-транзисторная логика)
 
    На рисунке 2 преведена упрощённая схема двухвходового элемента И-НЕ ТТЛ .
Рис. 2
 
    Обычно входной каскад логических элементов ТТЛ представляет собой простейшие компараторы, которые могут быть выполнены различными способами (на многоэмиттерном транзисторе или на диодной сборке). В логических элементах ТТЛ входной каскад, кроме функций компараторов, выполняет и логические функции. Далее следует выходной усилитель с двухтактным (двухключевым) выходом.
 
    В логических элементах КМОП входные каскады также представляют собой простейшие компараторы. Усилителями являются КМОП-транзисторы. Логические функции выполняются комбинациями параллельно и последовательно включенных ключей, которые одновременно являются и выходными ключами.
 
    Транзисторы могут работать в инверсном режиме, но с меньшим коэффициентом усиления. Это свойство используются в ТТЛ многоэмиттерных транзисторах. При подаче на оба входа сигнала высокого уровня (1,1) первый транзистор оказывается включенным в инверсном режиме по схеме эмиттерного повторителя с высоким уровнем на базе, транзистор открывается и подключает базу второго транзистора к высокому уровню, ток идёт через первый транзистор в базу второго транзистора и открывает его. Второй транзистор «открыт», его сопротивление мало и на его коллекторе напряжение соответствует низкому уровню (0). Если хотя бы на одном из входов сигнал низкого уровня (0), то транзистор оказывается включенным по схеме с общим эмиттером, через базу первого транзистора на этот вход идёт ток, что открывает его и он закорачивает базу второго транзистора на землю, напряжение на базе второго транзистора мало и он «закрыт», выходное напряжение соответствует высокому уровню. Таким образом, таблица истинности соответствует функции 2И-НЕ.
 
    Исходя из сказанного ранее, можно сделать вывод, что цeлью пpoeктиpoвaния любого цифpoвoгo ycтpoйcтвa являeтcя пoлyчeниe eгo лoгичecкoй фyнкции и сooтвeтcтвyющeй eй cxeмнoй peaлизaции. Таким устройством является Триггер — один из базовых элементов цифровой техники. На их основе проектируются и строятся электронные компоненты, применяемые в ЭВМ.