Трехмерная графика.

13.07.2013 02:31

Основные понятия трехмерной графики

Трехмерная графика нашла широкое применение в таких областях, как научные расчеты, инженерное проектирование, компьютерное моделирование физических объектов. Например: чтобы продать тот или иной продукт, вы должны представить его клиентам во всей красе. Именно по этой причине в 2013 году компания IKEA отказалась от фотографии в пользу 3D-графики. Теперь все изображения в каталоге IKEA сделаны при помощи трехмерных программ (см. пример ниже).

Для создания реалистичной модели объекта используются геометрические примитивы (куб, шар, конус и пр.) и гладкие, так называемые сплайновые поверхности. Вид поверхности определяется расположенной в пространстве сеткой опорных точек. Каждой точке присваивается коэффициент, величина которого определяет степень ее влияния на часть поверхности, проходящей вблизи точки. От взаимного расположения точек и величины коэффициентов зависит форма и гладкость поверхности в целом.

Деформация объекта обеспечивается перемещением контрольных точек, расположенных вблизи. Каждая контрольная точка связана с ближайшими опорными точками, степень ее влияния на них определяется удаленностью. Другой метод называют сеткой деформации. Вокруг объекта или его части размещается трехмерная сетка, перемещение любой точки которой вызывает упругую деформацию как самой сетки, так и окруженного объекта.

Еще одним способом построения объектов из примитивов служит твердотельное моделирование. Объекты представлены твердыми телами, которые при взаимодействии с другими телами различными способами (объединение, вычитание, слияние и др.) претерпевают необходимую трансформацию.

Все многообразие свойств в компьютерном моделировании сводится к визуализации поверхности, то есть к расчету коэффициента прозрачности поверхности и угла преломления лучей света на границе материала и окружающего пространства. Свойства поверхности описываются в создаваемых массивах текстур, в которых содержатся данные о степени прозрачности материала, коэффициенте преломления, цвете в каждой точке, цвете блика, его ширине и резкости и др.

После завершения конструирования и визуализации объекта приступают его "оживлению", т.е. заданию параметров движения. Компьютерная анимация базируется на ключевых кадрах.

Применение сложных математических моделей позволяет имитировать различные физические эффекты: взрывы, дождь, снег, огонь, дым, туман и др.

Основную долю рынка программных средств обработки трехмерной графики занимают три пакета: Autodesk 3ds Max; Softimage 3D компании Microsoft; Maya, разработанная консорциумом известных компаний (Alias, Wavefront, TDI). На сегодняшний день Maya является наиболее передовым пакетом в классе средств создания и обработки трехмерной графики для персональных компьютеров.

Трехмерная графика нашла широкое применение в таких областях, как научные расчеты, инженерное проектирование, компьютерное моделирование физических объектов. В качестве примера рассмотрим наиболее сложный вариант трехмерного моделирования – создание подвижного изображения реального физического тела.

В упрощенном виде для пространственного моделирования объекта требуется:

  • спроектировать и создать виртуальный каркас (“скелет”) объекта, наиболее полно соответствующий его реальной форме;
  • спроектировать и создать виртуальные материалы, по физическим свойствам визуализации похожие на реальные;
  • присвоить материалы различным частям поверхности объекта (на профессиональном жаргоне – “спроектировать текстуры на объект”);
  • настроить физические параметры пространства, в котором будет действовать объект, – задать освещение, гравитацию, свойства атмосферы, свойства взаимодействующих объектов и поверхностей;
  • задать траектории движения объектов;
  • рассчитать результирующую последовательность кадров;
  • наложить поверхностные эффекты на итоговый анимационный ролик.

Для создания реалистичной модели объекта используют геометрические примитивы (прямоугольник, куб, шар, конус и прочие) и гладкие, так называемые сплайновые поверхности. В последнем случае применяют чаще всего метод бикубических рациональных В-сплайнов на неравномерной сетке (NURBS). Вид поверхности при этом определяется расположенной в пространстве сеткой опорных точек. Каждой точке присваивается коэффициент, величина которого определяет степень ее влияния на часть поверхности, проходящей вблизи точки. От взаимного расположения точек и величины коэффициентов зависит форма и “гладкость” поверхности в целом.

После формирования “скелета” объекта необходимо покрыть его поверхность материалами. Все многообразие свойств в компьютерном моделировании сводится к визуализации поверхности, то есть к расчету коэффициента прозрачности поверхности и угла преломления лучей света на границе материала и окружающего пространства.

Закраска поверхностей осуществляется методами Гуро (Gouraud) или Фонга (Phong). В первом случае цвет примитива рассчитывается лишь в его вершинах, а затем линейно интерполируется по поверхности. Во втором случае строится нормаль к объекту в целом, ее вектор интерполируется по поверхности составляющих примитивов и освещение рассчитывается для каждой точки.

Свет, уходящий с поверхности в конкретной точке в сторону наблюдателя, представляет собой сумму компонентов, умноженных на коэффициент, связанный с материалом и цветом поверхности в данной точке. К таковым компонентам относятся:

  • свет, пришедший с обратной стороны поверхности, то есть преломленный свет (Refracted);
  • свет, равномерно рассеиваемый поверхностью (Diffuse);
  • зеркально отраженный свет (Reflected);
  • блики, то есть отраженный свет источников (Specular);
  • собственное свечение поверхности (Self Illumination).

Следующим этапом является наложение (“проецирование”) текстур на определенные участки каркаса объекта. При этом необходимо учитывать их взаимное влияние на границах примитивов. Проектирование материалов на объект – задача трудно формализуемая, она сродни художественному процессу и требует от исполнителя хотя бы минимальных творческих способностей.

После завершения конструирования и визуализации объекта приступают к его “оживлению”, то есть заданию параметров движения. Компьютерная анимация базируется на ключевых кадрах. В первом кадре объект выставляется в исходное положение. Через определенный промежуток (например, в восьмом кадре) задается новое положение объекта и так далее до конечного положения. Промежуточные значения вычисляет программа по специальному алгоритму. При этом происходит не просто линейная аппроксимация, а плавное изменение положения опорных точек объекта в соответствии с заданными условиями.

Эти условия определяются иерархией объектов (то есть законами их взаимодействия между собой), разрешенными плоскостями движения, предельными углами поворотов, величинами ускорений и скоростей. Такой подход называют методом инверсной кинематики движения. Он хорошо работает при моделировании механических устройств. В случае с имитацией живых объектов используют так называемые скелетные модели. То есть, создается некий каркас, подвижный в точках, характерных для моделируемого объекта. Движения точек просчитываются предыдущим методом. Затем на каркас накладывается оболочка, состоящая из смоделированных поверхностей, для которых каркас является набором контрольных точек, то есть создается каркасная модель. Каркасная модель визуализуется наложением поверхностных текстур с учетом условий освещения. В ходе перемещения объекта получается весьма правдоподобная имитация движений живых существ.

Наиболее совершенный метод анимации заключается в фиксации реальных движений физического объекта. Например, на человеке закрепляют в контрольных точках яркие источники света и снимают заданное движение на видео- или кинопленку. Затем координаты точек по кадрам переводят с пленки в компьютер и присваивают соответствующим опорным точкам каркасной модели. В результате движения имитируемого объекта практически неотличимы от живого прототипа.

Процесс расчета реалистичных изображений называют рендерингом (визуализацией). Большинство современных программ рендеринга основаны на методе обратной трассировки лучей (Backway Ray Tracing). Применение сложных математических моделей позволяет имитировать такие физические эффекты, как взрывы, дождь, огонь, дым, туман. По завершении рендеринга компьютерную трехмерную анимацию используют либо как самостоятельный продукт, либо в качестве отдельных частей или кадров готового продукта.

Особую область трёхмерного моделирования в режиме реального времени составляют тренажеры технических средств – автомобилей, судов, летательных и космических аппаратов. В них необходимо очень точно реализовывать технические параметры объектов и свойства окружающей физической среды. В более простых вариантах, например при обучении вождению наземных транспортных средств, тренажеры реализуют на персональных компьютерах.

Самые совершенные на сегодняшний день устройства созданы для обучения пилотированию космических кораблей и военных летательных аппаратов. Моделированием и визуализацией объектов в таких тренажерах заняты несколько специализированных графических станций, построенных на мощных процессорах и скоростных видеоадаптерах с аппаратными ускорителями трехмерной графики. Общее управление системой и просчет сценариев взаимодействия возложены на суперкомпьютер, состоящий из десятков и сотен процессоров. Стоимость таких комплексов выражается девятизначными цифрами, но их применение окупается достаточно быстро, так как обучение на реальных аппаратах в десятки раз дороже.

 

Программные средства обработки трехмерной графики

На персональных компьютерах основную долю рынка программных средств обработки трехмерной графики занимают лишь несколько пакетов. Эффективней всего они работают на самых мощных машинах (в многопроцессорных конфигурациях Intel Core i7) под управлением операционной системы Windows. Рассмотрим некоторые из них.

На данный момент существует как минимум три самых популярных пакета инструментов для моделирования, анимации и визуализации. Это Autodesk 3ds Max, Autodesk Maya и Maxon Cinema 4D.

Самый мощный во всех отношениях, имеющий наибольшее распространение среди пользователей, работающих во всех областях компьютерной графики, это легендарный 3ds Max. Кстати, до сих пор, многие его ошибочно называют старым названием 3D Studio. Однако он уже много лет так не называется. 3ds Max может все, что относится к 3d. И моделирование, и анимацию, и визуализацию.

Следующий по популярности, это – пакет программного обеспечения от той же компании, который называется Maya. Главное принципиальное отличие Maya от 3ds Max, это схема рабочего процесса. В частности, его части, отвечающей за создание анимации. Уже много лет подряд и по сей день, именно из-за большего удобства и гибкости анимационных инструментов, именно Maya считается лучшим выбором для аниматоров.

CINEMA 4D, это по сути тот же 3ds Max, но с несколько отличным набором инструментов и функций. Однако, это абсолютно полноценный инструмент,  дающий возможность создавать превосходные изображения. Да, он не такой популярный и мощный как 3ds Max, да и не имеющий такого количества 3d клипартов и плагинов, но все же он – абсолютно функционален.

Есть и отечественная разработка, оптимизированная для машиностроения: T-FLEX CAD – система параметрического автоматизированного проектирования и черчения, позволяющая получать параметрические трёхмерные модели и сборки.

Существуют и весьма компромиссные альтернативы – полностью бесплатные Blender и Google SketchUp. Разумеется, их функционал намного более скромен, чем у платных программ.

Следующим важным критерием при выборе 3d программы, является встроенный в нее визуализатор. То есть, программа, которая отвечает за генерацию картинок. Она еще называется «рендерер», от качества алгоритма которой зависит фотореалистичность получаемого изображения. Ведь именно изображения и являются финальной целью для большинства 3d художников.

Autodesk 3ds Max и Maya имеют самые мощные встроенные инструменты, в том числе и 3d рендерер. В них по умолчанию встроен 3d рендерер сторонней компании mental images, под названием mental ray.

CINEMA 4D имеет более скромный встроенный рендерер, но тем не менее, при определенной сноровке, позволяющий добиться отличных результатов.

T-FLEX CAD так же имеет собственный встроеный 3d рендерер.

В любом случае, все эти пакеты 3d графики позволяют подключать внешние, более продвинутые рендереры в виде плагинов. Конечно же, за которые необходимо платить отдельно.