Введение в САПР.

19.01.2017 22:20

    Введение в автоматизированное проектирование

    Важнейшим достижением научно-технического прогресса является комплексная автоматизация промышленного производства. В своей высшей форме — гибком автоматизированном производстве (ГАП) — автоматизация предполагает функционирование многочисленных взаимосвязанных технических средств на основе программного управ¬ления и групповой организации производства.
    В связи с созданием и использованием гибких производственных комплексов механической обработки резанием особое значение приобретают станки с числовым программным управлением (ЧПУ), выпуск которых в нашей стране постоянно возрастает.
    В результате замены универсального неавтоматизированного оборудования станками с ЧПУ трудоемкость изготовления деталей оказалось возможным сократить в несколько раз (до пяти — в зависимости от вида обработки и конструктивных особенностей обрабатываемых заготовок).
    Внедрение ЧПУ в технологию машиностроения обусловило необходимость построения числовых моделей технологического процесса, а следовательно, широкое использование математических методов и числовой вычислительной техники. Это привело к революционным изменениям в технологии машиностроения. Технология машиностроения из науки, носившей по преимуществу качественный характер, стала превращаться в науку точную. При этом программирование обработки на станках с ЧПУ, возникшее на стыке ряда дисциплин (технологии машиностроения, математики, кибернетики), со временем приобрело самостоятельное значение.
    Эксплуатация станков с ЧПУ возможна при наличии не только соответствующего технологического процесса, но и обеспечивающих его исполнение управляющих программ (УП). Поэтому программирование обработки для станков с ЧПУ отличается трудоемкостью и сложностью, требует от технолога высокой профессиональной подготовки, знания не только ряда технологических дисциплин, но и основ программирования, некоторых разделов математики и т. п.
    Проектирование технического объекта — создание, преобразование и представление в принятой форме образа этого еще не существующего объекта. Образ объекта или его составных частей может создаваться в воображении человека в результате творческого процесса или генерироваться в соответствии с некоторыми алгоритмами в процессе взаимодействия человека и ЭВМ. В любом случае инженерное проектирование начинается при наличии выраженной потребности общества в некоторых технических объектах, которыми могут быть объекты строительства, промышленные изделия или процессы. Проектирование включает в себя разработку технического предложения и (или) технического задания (ТЗ), отражающих эти потребности, и реализацию ТЗ в виде проектной документации.
    Обычно ТЗ представляют в виде некоторых документов, и оно является исходным (первичным) описанием объекта. Результатом проектирования, как правило, служит полный комплект документации, содержащий достаточные сведения для изготовления объекта в заданных условиях. Эта документация и есть проект, точнее окончательное описание объекта. Более коротко, проектирование — процесс, заключающийся в получении и преобразовании исходного описания объекта в окончательное описание на основе выполнения комплекса работ исследовательского, расчетного и конструкторского характера.
    Преобразование исходного описания в окончательное порождает ряд промежуточных описаний, подводящих итоги решения некоторых задач и используемых для обсуждения и принятия решений для окончания или продолжения проектирования. Такие промежуточные описания называют проектными решениями.
    Проектирование, при котором все проектные решения или их часть получают путем взаимодействия человека и ЭВМ, называют автоматизированным проектированием, в отличие от ручного (без использования ЭВМ) или автоматического (без участия человека на промежуточных этапах). Система, реализующая автоматизированное проектирование, представляет собой систему автоматизированного проектирования (САПР, в англоязычном написании CAD System — Computer Aided Design System).
    Автоматическое проектирование возможно лишь в отдельных частных случаях для сравнительно несложных объектов. Превалирующим в настоящее время является автоматизированное проектирование.
    Проектирование сложных объектов основано на применении идей и принципов, изложенных в ряде теорий и подходов. Наиболее общим подходом является системный подход, идеями которого пронизаны различные методики проектирования сложных систем.
 

Структура САПР

    Как и любая сложная система, САПР состоит из подсистем. Различают подсистемы проектирующие и обслуживающие.
    Проектирующие подсистемы непосредственно выполняют проектные процедуры. Примерами проектирующих подсистем могут служить подсистемы геометрического трехмерного моделирования механических объектов, изготовления конструкторской документации, схемотехнического анализа, трассировки соединений в печатных платах.
    Обслуживающие подсистемы обеспечивают функционирование проектирующих подсистем, их совокупность часто называют системной средой (или оболочкой) САПР. Типичными обслуживающими подсистемами являются подсистемы управления проектными данными, подсистемы разработки и сопровождения программного обеспечения CASE (Computer Aided Software Engineering), обучающие подсистемы для освоения пользователями технологий, реализованных в САПР.
    Структурирование САПР по различным аспектам обусловливает появление видов обеспечения САПР. Принято выделять семь видов обеспечения:
  • техническое обеспечение (ТО), включающее различные аппаратные средства (ЭВМ, периферийные устройства, сетевое коммутационное оборудование, линии связи, измерительные средства);
  • математическое обеспечение (МО), объединяющее математические методы, модели и алгоритмы для выполнения проектирования;
  • программное обеспечение (ПО), представляемое компьютерными программами САПР;
  • информационное обеспечение (ИО), состоящее из баз данных (БД), систем управления базами данных (СУБД), а также включающее другие данные, используемые при проектировании;
  • лингвистическое обеспечение (ЛО), выражаемое языками общения между проектировщиками и ЭВМ, языками программирования и языками обмена данными между техническими средствами САПР;
  • методическое обеспечение (МетО), включающее различные методики проектирования, иногда к МетО относят также математическое обеспечение;
  • организационное обеспечение (ОО), представляемое штатными расписаниями, должностными инструкциями и другими документами, регламентирующими работу проектного предприятия.
    Отметим, что вся совокупность используемых при проектировании данных называется информационным фондом САПР. Базой данных называют упорядоченную совокупность данных, отображающих свойства объектов и их взаимосвязи в некоторой предметной области. Доступ к БД для чтения, записи и модификации данных осуществляется с помощью СУБД, а совокупность БД и СУБД называют банком данных (БнД).
    Классификацию САПР осуществляют по ряду признаков, например, по приложению, целевому назначению, масштабам (комплексности решаемых задач), характеру базовой подсистемы — ядра САПР.
    По приложениям наиболее представительными и широко используемыми являются следующие группы САПР:
  • САПР для применения в отраслях общего машиностроения. Их часто называют машиностроительными САПР или MCAD (Mechanical CAD) системами.
  • САПР в области радиоэлектроники: системы ECAD (Electronic CAD) или EDA (Electronic Design Automation).
  • САПР в области архитектуры и строительства.
    Кроме того, известно большое число специализированных САПР, или выделяемых в указанных группах, или представляющих самостоятельную ветвь в классификации. Примерами таких систем являются САПР больших интегральных схем (БИС); САПР летательных аппаратов; САПР электрических машин и т.п.
    По целевому назначению различают САПР или подсистемы САПР, обеспечивающие разные аспекты (страты) проектирования. Так, в составе MCAD появляются CAE/CAD/CAM системы.
    По масштабам различают отдельные программно-методические комплексы (ПМК) САПР, например, комплекс анализа прочности механических изделий в соответствии с методом конечных элементов (МКЭ) или комплекс анализа электронных схем; системы ПМК; системы с уникальными архитектурами не только программного (software), но и технического (hardware) обеспечений.
    По характеру базовой подсистемы различают следующие разновидности САПР.
САПР на базе подсистемы машинной графики и геометрического моделирования. Эти САПР ориентированы на приложения, где основной процедурой проектирования является конструирование, т.е. определение пространственных форм и взаимного расположения объектов. Поэтому к этой группе систем относится большинство САПР в области машиностроения, построенных на базе графических ядер. В настоящее время широко используются унифицированные графические ядра, применяемые более чем в одной САПР, это ядра Parasolid фирмы EDS Unigraphics и ACIS фирмы Intergraph.
    САПР на базе СУБД. Они ориентированы на приложения, в которых при сравнительно несложных математических расчетах перерабатывается большой объем данных. Такие САПР преимущественно встречаются в технико-экономических приложениях, например, при проектировании бизнес-планов, но имеют место также при проектировании объектов, подобных щитам управления в системах автоматики.
    САПР на базе конкретного прикладного пакета. Фактически это автономно используемые программно-методические комплексы, например, имитационного моделирования производственных процессов, расчета прочности по методу конечных элементов, синтеза и анализа систем автоматического управления и т.п. Часто такие САПР относят к системам CAE. Примерами могут служить программы логического проектирования на базе языка VHDL, математические пакеты типа MathCAD.
    Комплексные (интегрированные) САПР, состоящие из совокупности подсистем предыдущих видов. Характерными примерами комплексных САПР являются CAE/CAD/CAM-системы в машиностроении или САПР БИС. Так, САПР БИС включает в себя СУБД и подсистемы проектирования компонентов, принципиальных, логических и функциональных схем, топологии кристаллов, тестов для проверки годности изделий. Для управления столь сложными системами применяют специализированные системные среды.
 

Требования к техническому обеспечению САПР

    Техническое обеспечение САПР включает в себя различные технические средства (hardware), используемые для выполнения автоматизированного проектирования, а именно вычислительные системы, ЭВМ (компьютеры), периферийные устройства, сетевое оборудование, а также оборудование некоторых вспомогательных систем (например, измерительных), поддерживающих проектирование. Отметим, что вычислительной системой (в отличие от ЭВМ и вычислительной сети) называют совокупность аппаратных и программных средств, совместно используемых при решении задач и размещаемых компактно на территории, размеры которой соизмеримы с размерами аппаратных средств.
    Используемые в САПР технические средства должны обеспечивать:
  • выполнение всех необходимых проектных процедур, для которых имеется соответствующее ПО;
  • взаимодействие между проектировщиками и ЭВМ, поддержку интерактивного режима работы;
  • взаимодействие между членами коллектива, выполняющими работу над общим проектом.
    Первое из этих требований выполняется при наличии в САПР вычислительных машин и систем с достаточными производительностью и емкостью памяти.
    Второе требование относится к пользовательскому интерфейсу и выполняется за счет включения в САПР удобных средств ввода-вывода данных и прежде всего устройств обмена графической информацией.
    Третье требование обусловливает объединение аппаратных средств САПР в вычислительную сеть.
    В результате общая структура ТО САПР представляет собой сеть узлов, связанных между собой средой передачи данных. Узлами (станциями данных) являются рабочие места проектировщиков, часто называемые автоматизированными рабочими местами (АРМ) или рабочими станциями (WS — Workstation), ими могут быть также большие ЭВМ (мейнфреймы), отдельные периферийные и измерительные устройства. Именно в АРМ должны быть средства для интерфейса проектировщика с ЭВМ. Что касается вычислительной мощности, то она может быть распределена между различными узлами вычислительной сети.
    Среда передачи данных представлена каналами передачи данных, состоящими из линий связи и коммутационного оборудования.
 

Типы геометрических моделей

    Подсистемы машинной графики и геометрического моделирования (МГиГМ) занимают центральное место в машиностроительных САПР-К. Конструирование изделий в них, как правило, проводится в интерактивном режиме при оперировании геометрическими моделями, т.е. математическими объектами, отображающими форму деталей, состав сборочных узлов и возможно некоторые дополнительные параметры (масса, момент инерции, цвета поверхности и т.п.).
    В подсистемах МГиГМ типичный маршрут обработки данных включает в себя получение проектного решения в прикладной программе, его представление в виде геометрической модели (геометрическое моделирование), подготовку проектного решения к визуализации, собственно визуализацию в аппаратуре рабочей станции и при необходимости корректировку решения в интерактивном режиме. Две последние операции реализуются на базе аппаратных средств машинной графики. Когда говорят о математическом обеспечении МГиГМ, имеют в виду прежде всего модели, методы и алгоритмы для геометрического моделирования и подготовки к визуализации. При этом часто именно математическое обеспечение подготовки к визуализации называют математическим обеспечением машинной графики.
    Различают математическое обеспечение двумерного (2D) и трехмерного (3D) моделирования. Основные применения 2D-графики — подготовка чертежной документации в машиностроительных САПР, топологическое проектирование печатных плат и кристаллов БИС в САПР электронной промышленности. В развитых машиностроительных САПР используют как 2D, так и 3D моделирование для синтеза конструкций, представления траекторий рабочих органов станков при обработке заготовок, генерации сетки конечных элементов при анализе прочности и т.п.
    В процессе 3D моделирования создаются геометрические модели, т.е. модели, отражающие геометрические свойства изделий. Различают геометрические модели каркасные (проволочные), поверхностные, объемные (твердотельные).
Каркасная модель представляет форму детали в виде конечного множества линий, лежащих на поверхностях детали. Для каждой линии известны координаты концевых точек и указана их инцидентность ребрам или поверхностям. Оперировать каркасной моделью на дальнейших операциях маршрутов проектирования неудобно, и поэтому каркасные модели в настоящее время используют редко.
    Поверхностная модель отображает форму детали с помощью задания ограничивающих ее поверхностей, например, в виде совокупности данных о гранях, ребрах и вершинах.
    Особое место занимают модели деталей с поверхностями сложной формы, так называемыми скульптурными поверхностями. К таким деталям относятся корпуса многих транспортных средств (например, судов, автомобилей), детали, обтекаемые потоками жидкостей и газов (лопатки турбин, крылья самолетов), и др.
    Объемные модели отличаются тем, что в них в явной форме содержатся сведения о принадлежности элементов внутреннему или внешнему по отношению к детали пространству.
    Рассмотренные модели отображают тела с замкнутыми объемами, являющиеся так называемыми многообразиями (manifold). Некоторые системы геометрического моделирования допускают оперирование немногообразными моделями (nonmanifold), примерами которых могут быть модели тел, касающихся друг друга в одной точке или вдоль прямой. Немногообразные модели удобны в процессе конструирования, когда на промежуточных этапах полезно работать одновременно с трехмерными и двумерными моделями, не задавая толщины стенок конструкции, и т.п.
 

Типы САПР в области машиностроения

    Среди CAD-систем в машиностроении (MCAD) различают системы нижнего, среднего и верхнего уровней. Это разделение возникло на рубеже 80-90-х годов прошлого века. Системами нижнего уровня (или легкими системами) стали называть сравнительно дешевые САПР, ориентированные на 2D-графику, т.е. на автоматизацию преимущественно чертежных работ. Техническим обеспечением легких САПР были персональные ЭВМ, в то время значительно уступавшие по своим возможностям рабочим станциям.
    Системы верхнего уровня, называемые также "тяжелыми" САПР (или high-end), разрабатывались для реализации на рабочих станциях или мейнфреймах. Эти системы были более универсальными, но и дорогими, ориентированными на геометрическое твердотельное и поверхностное моделирование. Оформление чертежной документации в них обычно осуществляется с помощью предварительной разработки трехмерных геометрических моделей. В дальнейшем системы, в которых 3D-моделирование ограничивалось лишь твердотельными моделями, т.е. занимавшие промежуточное положение между "легкими" и "тяжелыми" САПР, стали называть системами среднего уровня.
    В настоящее время развитие САПР привело к тому, что во многих системах среднего уровня появились средства поверхностного моделирования, а возможности персональных ЭВМ стали приемлемыми для систем верхнего уровня. В результате изменились принципы, по которым различают тяжелые и средние системы. Тяжелыми теперь называют системы CAE/CAD/CAM/PDM, т.е. системы с возможностями конструкторского и технологического проектирования, инженерного анализа, управления проектными данными и с расширенным составом специализированных программных модулей в подсистемах CAD и CAM. В отличие от них, системы среднего уровня теперь называют также серийными, mainstream или mid-range.
    К классу high-end систем сегодня CATIA, Unigraphics NX, ProEngineer, а к mainstream системам - SolidWorks, SolidEdge, Inventor, T-Flex и Компас отечественной разработки, а так же ряд других.
    Системы одного уровня по своим функциональным возможностям приблизительно равноценны, новые достижения, появившиеся в одном из программно-методических комплексов САПР, в скором времени реализуются в новых версиях других комплексов.
    В САПР крупных предприятий обычно используют программы разных уровней. Связано это с тем, что более 80% всех процедур конструирования можно выполнить на CAD-системах нижнего и среднего уровней, кроме того, "тяжелые" системы дороги. Поэтому предприятие приобретает лишь ограниченное число экземпляров (лицензий) программы верхнего уровня, а большинство клиентских рабочих мест обеспечивается экземплярами программ нижнего или среднего уровней. При этом возникает проблема обмена информацией между разнотипными CAD-системами. Она решается путем использования языков и форматов, принятых в CALS-технологиях, хотя для неискаженной передачи геометрических данных с помощью промежуточных унифицированных языков приходится преодолевать определенные трудности.